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Abstract

Although most scheduling problems ax#-hard, domain specific techniques perform well in
practice but are quite expensive to construct. ddaptive poblemsolving, domain specific
knowledges acquired automatically for a general problem solver witxible control architecture.

In this approach, a learning system explores a space of possible heuristic methods for one well-suited
to the eccentricities of the given domain and problem distribution. In this article, we discuss an
application of the approach to scheduling satellite communications. Using problem distributions
basedon actual mission requirements, our approach identifies strategies that not only deerease
amountof CPU time required to produce schedules, but also increase the percentage of problems that
aresolvable within computational resource limitations.

1. Introduction

With the maturation of automated problem-solving research has come grudging abandonment of the
searchfor “the” domain-independent problem solvé&eneral problem-solving tasks like planning
andscheduling arprovably intractable. Although heuristic methods afectif/e in many practical
situationsan ever growing bodyf work demonstrates the narrowness of specific heuristic strategies
(e.g., Baker1994, Frost & Dechtefl994, Kambhampati, Knoblock &avig, 1995, Stone,elbso

& Blythe, 1994, ¥ng & Murray 1994). Studies repeatedly show that a strategy that excels on one
task can perform abysmally on others. These negative results do not entirely discredit
domain-independeifpproaches, but suggest that considerafdg ehd expertise is requiredftod
anacceptable combination of heuristic methods, a conjecture that is generally by published accounts
of real-world implementations (e.g.,iMins, 1988). The specificity of heuristic methods is
especiallytroubling whenwe consider that problem-solving tasks frequently change over time.
Thus,a heuristic problem solver magquire expensive “tune-ups” as the character of the application
changes.

Adaptiveproblem solvings a general method for reducing the cost of developing and maintain
ing effective heuristic problem solvers. Rather than forcing a developer to dospseific heuristic
strategy, an adaptive problem solver adjusts itself to the idiosyncrasies of an application. This can
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beseen as a natural extension of the principle of least commitment (Sacerdoti, 1977). When solving
aproblem, one should not commit to a particular solution path until one has information to distinguish
that path from the alternatives. Likewise, when faced with an entire distribution of problems, it
makessense to avoid committing to a particular heuristic strategy until one can make an informed
decisionon which strategy performs better on the distribution. An adaptive problem solver embodies
a space of heuristic methods, amly settles on a particular combination of these methods after a
periodof adaptation, during which the system automatically acquires information about the-particu
lar distribution of problems associated with the intended application.

In previous articles, Gratch and DeJong have presented a formal characterization of adaptive
problemsolvingand developed a general method for transforming a standard problem solver into an
adaptive one (Gratch & DeJong, 1992, Gratch & DeJong, 1996). The primary purpose of this article
is twofold: to illustrate the &tacy of learning approaches for solving real-world problem solving
tasks, and to build empirical support for the the specific learning approach we advocate.- After re
viewingthe basic method, we describe its application taéwelopment of a lge-scale scheduling
systemfor the National Aeronautics and Space Administration (NASAg aypplied the adaptive
problemsolving approach to a scheduling system developed by a separate rgsagrchnd with
out knowledge of our adaptive techniques. The scheduler included an expert-crafted scheduling
strategyto achieve dicient scheduling performance. By automatically adapting this schedytng
temto the distribution of scheduling problems, the adaptive approach resulted in a significant im
provementn scheduling performance over an expert strategy: the best adaptation fooachiye
learning exhibited a seventy percent improvement in scheduling performance (the average learned
strategy resulted in a fifty percent improvement).

2. Adaptive Problem Solving

An adaptive problem solver defers the selection of a heuristic strategy until some information can
be gathered about their performance over the specific distribution of tasks. Thinsech an
approachis predicated on the claithat it is dificult to identify an efective heuristic strategs

priori. While this claim is by no means proven, there is considerable evidence that, at least for the
classof heuristics that have been proposed till hawr one collection of heuristic methods will
suffice. For example, Kambhampati, Knoblock, arahy (1995) illustratbow planning heuristics
embodydesign tradeoffs— heuristics that reduce the size of search space typically increase the cost
ateach node, and vice versa — and that the desired traedeeg with diferent domains. Similar
observations have been made in the context of constraint satisfaction problemsl(@kefFrost

& Dechter 1994). This inherent di€ulty in recognizing the worth (or lack of worth) of control
knowledgehas been termed thuility problem(Minton, 1988) and has been studied extensively in
the machine learning community (Gratch & DeJong, 1992, Greiner & Jurisca, 1992, Heii&r
Subramaniaé Hunter, 1992). In our case the utility problem is determinihrggworth of a heuristic
strategy for specific problem distribution.

2.1 Formulation of Adaptive problem solving

Beforediscussing approaches to adaptive problem solving, we formally state the common definition
of the task (as proposed by Gratch & Dedong, 1992, Greiner & Jurisca, 1992, Laird, 1992,
Subramanian& Hunter, 1992). Adaptive problem solving requires a flexible problem solver
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meaning the problem solver possesses control decisions that mesohedin alternative ways.

Givena flexible problem solvePS with several control point€P; ...CR, (where each control point

CR corresponds to a particular control decision), and a set of alternative heuristic methods for each
controlpoint, {M; 1...M k.}, 1 acontrol strategydefines a specific method for every control p¢eng.,

STRAT= <Mj 3,M2,6,M31,...>). A control strategy determines tnerall behavior of the problem
solver. LetPSTraTbe the problem solver operating under a particular control strategy.

Thequality of a problem solving strategy is defined in terms of the decision-theoretic notion of
expecteditility. LetU(PSTraTd), be a real valuedtility functionthat is a measure of the goodness
of the behavior of the problem solver on a specific prolwiefdlore generallyexpected utility can
be defined formally over a distribution of probleds

EolU(PSsrrad] = O U(PSirrasd) X probability(d)

deD
Thegoal of adaptive problem solving can be expressed as: given a problem distbBhfitidrsome
controlstrategy in the space of possible strategies that maximizes the expected utility of the problem
solver For example, in the PRODIGY planning system (Minton, 1988), control points include: how
to select an operator to use to achieve the goal; how to select variable bindings to instantiate the
operator;etc. A method for the operator choice conpoint might be a set of control rules to
determinewhich operators to use to achieve various goalstraiegy for PRODIGY would be a set
of control rules andlefault methods for every control point (e.g., one for operator choice, one for
bindingchoice, etc.). Utility might be defined as a function of the time to construct topgiven
planning problem.

2.2 Approaches to Adaptive Problem Solving

Threepotentially complementary approaches to adaptive problem solving have been discussed in the
literature. The first, what we call ayntactic approachis to preprocess a problem-solving domain

into a more dicient form, based solely on the domaisyntactic structure. For example, Etzieni’
SrtaTiC system analyzes a portion of a planing donsadeductiveslosure to conjecture a set of search
control heuristics (Etzioni, 1990). Dechter and Pearl describe a class of constraint satisfaction
techniqueghat preprocess a general class of problemsaimtore dfcient form (Dechter & Pearl,

1987). More recent work has focused on recognizing those structural properties that influence the
effectivenesof different heuristic methods (Frost & Decht#994, Kambhampati, Knoblock &
Yang.1995, Stone, #oso & Blythe, 1994)The goal of this research is to provide a problem solver
with what is essentially a big lookup table, specifying which heuristic strategy to use basatkon
easilyrecognizable syntactic features of a domain. While this later approach seems promising, work
in this area is still preliminary and has focused primanilgrtificial applications. The disadvantage

of purely syntactic techniques is that that they ignore a potentially important source of information,
thedistribution of problems. Furthermore, current syntactic approaches to this problem are specific
to a particularoften unarticulated, utility function (usually problem-solving cost). For example,
allowing the utility function to be a usespecified parameter would require a significant and
problematic extension of these methods.

Thesecond approach, which we cafjenerative appyach,is to generate custom-made heuris
tics in responseéo careful, automatic, analysis of past problem-solving attempts. Generative ap

1. Notethat a method may consist of smaller elements so that a method may be a set of control rules or
a combination of heuristics.
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proachegonsider not only the structuséthe domain, but also structures that arise from the problem
solver interacting with specific problems from the domain. This approach is exemplifiediy S
(Laird, Rosenbloom & Newell, 1986) anaké&bicy/esL (Minton, 1988). These techniques analyze
pastproblem-solving traces and conjectures heurggiittrol rules in response to specific problem-
solving inefficiencies. Such approaches can effectively exploit the idiosyncratic structure of a do-
mainthrough this careful analysis. The limitation of sapproaches is that they have typically fo
cusedon generating heuristics in response to partiquiablems and have not well addressed the
issueof adapting to a distribution of problefng-urthermore, as with the syntactic approaces,

far they have been directed towards a specific utility function.

Thefinal approach we call th&tatistical approach.These techniques explicitly reason about
performancef different heuristic strategies across the distribution of problems. These are generally
statisticalgenerate-and-test approaches that estimated the average performarieseaf diuris-
ticsfrom a random set of training examples, and explore an exgp&ite of heuristics with greedy
searchiechniques. Examples of such systems areGser(Gratch & DeJong, 1992)aRo (Grein
er& Jurisca, 1992)and the statistical component obMi-Tac (Minton, 1993). Similar approaches
havealsobeen investigated in the operations research commuiaikp(tz & Lugosi, 1990). These
techniquesire easy to usapply to a variety of domains and utility functions, and can provide strong
statisticauarantees about their performance. They are limited, hovesweey are computational
ly expensive, require many training examples to idemti§grategyand face problems with local
maxima. Furthermore, they typically leave it to the user to conjecture the space of heuristic methods
(see Minton, 1993 for a notable exception).

In this article, we adopt the statistical approach to adaptive problem solving due to its generality
andease of use. Iparticular we use thedmrosertechnigque for adaptive problem solving (Gratch
& DelJong, 1992, Gratch & DeJong, 1996), which is reviewed in the next section. Our imptementa
tion incorporates some novel features to address the computational expense of the ine#tigd.
howeveran adaptive problem solver would incorporate some form of each of these meththds. T
end we are investigating how to incorporate other methods of adaptation in our current research.

3. CoMPOSER

Composerembodies a statistical approach to adaptive problem solvirtgrifa problem solver into

an adaptive problem solyehe developer is required to specify a utility functionggresentative
sampleof training problems, and a space of possible heuristic strategieso€ERthen adaptthe
problemsolver by exploring the space of heuristics via statistical hillclimbing search. The search
spacds defined in terms ofmansformation generatowhich takes a strategy and generates afset
transformationso it. For example, one simple transformation generator just returns allsigitjed
modificationsto a given strategyThus a transformatiagenerator defines both a space of possible
heuristicstrategies and the non-deterministic order in which this space rmagifobed. @POSERS

overall approach is one of generate andt hillclimbing. Given an initial problem solyeghe
transformatiorgenerator returns a set of possible transformations to its control strategge are
statisticallyevaluated over the expected distribution of problems. A transformation is adopted if it

2. While generative approaches can be trained on a problem distribution, learning typically occurs only
within the context of a single problem. These systems will often learn knowledge which is helpful in a
particular problem but decreases utility overall, necessitating the use of utility analysis techniques.
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increaseshe expected performance of solving problems over that distribution. The generator then
constructs aet of transformations to this new strategy and so on, climbing the gradient of expected
utility values.

Formally, @mpPoseRrtakes an initial problem solvé?S), and identifies a sequencembblem
solvers,PS, PS, ... where each subsequd?® has higher expected utility with probability-d
(whered > 0 is some user—specified constant). The transformation gen&fate a function that
takes a problem solver and returns a set of candidate chalg@sy(t, PS is a function that takes
atransformationt IITG(PS and a problem solver and returns a new problem solver that is the result
of transformingPSwith t. LetU;(PS denote the utility oPSon problenj. The change in utility
thata transformation provides for tftb problem, called thimcremental utilityof a transformation,
is denoted bYAU; (t|PS). This is the diference in utility between solving the problem with and with
outthe transformation. @roserfinds a problem solver with high expected utility by identifying
transformationsvith positive expected incremental utilitf he expected incremental utility is esti
matedby averaging a samptd randomly drawn incremental utility values. Given a samphevaf-
ues,the average of that sample is denotedUy(t|PS. The likely diferencebetween the average
andthe true expected incremental utility depends on the variance of the distribution, estimated from
asampleby thesample varianc&i(t|PS, and the size of the samphe,ComposERprovides a statisti
cal techniqudor determining when sfifient examples have been gathered to decide, with &rror
thatthe expected incremental utility of a transformation is positive or negative. BecauwsesEr
presumeshat the relevant distributions are normally distributemygbserrequires at that each esti
mateof incremental utility be based on a minimum number of samplesbe determined for each
application. The algorithm is summarized in Figure 1.

CompPosEeRs technique is applicable in cases where the following conditions apply:

1. The control strategy space can be structured to facilitate hillclimbing search. In general, the space
of such strategiess so lage as to make exhaustive search intractablempGsER requires a
transformatiorgenerator that structures this space into a sequence of search steps, with ffelatively
transformations at each step. In Section 5.1 we discuss some techniques for incorporating domain
specific information into the structuring of the control strategy space.

2. There is a laye supply of representative training problems so that an adequate sampling of
problems can be used to estimate expected utility for various control strategies.

3. Problems can be solved with afguéntly low cost in resources so that estimating expected utility
is feasible.

4. There is sufficient regularity in the domain such that the cost of learning a good strategy can be
amortized over the gains in solving many problems.

4. The Deep Space Network

The Deep Space Network (DSN) is a multi-national collection of ground-based radio antennas
responsible fomaintaining communications with research satellites and deep space probes. DSN
Operationsis responsible for scheduling communications for gelaand growing number of

spacecraft. Thiglready complex scheduling problem is becoming more challenging each year as
budgetarypressures limithe construction of new antennas. As a result, DSN Operations has turned
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Given: PSg, TQED, 6, examplesn,

[1] PS:=PSg; T:=TG(PY; n:=0;i:=0; a:=Bound®, [T));
[3] Repeat {Find next transformation}

[2] While T #[M andi < |[examples| dofHillclimb as long as there is data and possible transformations}

[4] n:=n+1;i:=i+1; step-taken := FALSE;

[5] OtOT: GetAU;(T|PS) {Observe incremental utility values fath problem}
=)

[6] significant:= 7€ T:n ngand SRS n

APy > [Q@)]?

{Collect all transformations that have reached statistical significance.}

[7] T:= T-7 € significant: AU (z[P§ 0 {Discard trans. that decrease expeced utility}
[8] If 7 & significant: AUL(z|PS 0 Then {Adopt T that most increases expected utility}
] PS = Applyx € significant: y € significant AU,(XPS  AU,yPS ,P9
[10] T:=TG(PS; n:=0; a:=Bound@, [T|); step—taken :=TRUE;

[11]  Until step—taken of=0 ori=|examples|;

Return: PS L
Boundd, [T]) := % Qa):= x where 1 27 e%%%dy= %

X

Figure 1: The GmpPoseralgorithm

increasinglytowards intelligent scheduling techniques as a way of increasingfitierely of
network utilization. As part of this ongoingfeft, the JetPropulsion Laboratory (JPL) has been
given the responsibility of automating the scheduling of 2temeter sub-net; a collection of
26-meter antennas at Goldstone, CA, Canberra, Australia and Madrid, Spain.

In this section we discuss the application of adaptive problem-solving techniques to the-develop
mentof a prototype system for automated scheduling of the 26-meter suldveéirst discuss the
developmenof the basic scheduling system and then discuss how adaptiblem solving en
hanced the scheduler’s effectiveness.

4.1 The Scheduling Problem

Schedulinghe DSN 26-meter subnet can be viewed agje leonstraint satisfaction problem. Each
satellitehas a set of constraints, called project requirements, that define its communication needs.
A typical project specifies three generic requirements: the minimum and maximum number of
communicatiorevents required in a fixed period of time; the minimum and maximum duration for
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thesecommunication events; and the minimum and maximum allowable gap between cormmunica
tion events. For example, Nimbus-7, a meteorological satellite, must have at least four 15-minute
communicationslots per dayand these slots cannot be greater than five hours apart. Project
requirementgre determined by the project managers and tend to be invariant across the lifetime of
the spacecraft.

In addition to project requirements, there are constraints associated with the various antennas.
First, antennas are a limited resource — two satellites cannot communicate with a given antenna at
thesame time. Second, a satellite can @agnmunicate with a given antenna at certain times, de
pendingon when its orbit brings it within view of the antenna. Finallytennas undgo routine
maintenance and cannot communicate with any satellite during these times.

Schedulings done on a weekly basis. A weekly schedupraplem is defined by three ele
ments:(1) the set of satellited® be scheduled, (2) the constraints associated with each satellite, and
(3) a set ofime periodsspecifying all temporal intervals when a satellite can legally communicate
with an antenna for that week. Each time periaaltigple specifying a satellite, a communication
time interval, and an antenna, where (1) the time interval must satisfy the communication duration
constraintgor the satellite, (2) the satellite must be in view of the antenna during this interval: Anten
namaintenance is treated as a project with time periods and constraunt$ime periods conflict
if they use the same antenna and overlap in temporal eXerglid schedule specifies a non-eon
flicting subset of all possible time periods where each project’s requirements are satisfied.

Theautomated scheduler must genesateedules quickly as scheduling problems are frequently
over-constrained.e., the project constraints combined with the allowable time periods produces a
setof constraints which is unsatisfiable). When this occurs, DSN Operations must go through a com
plex cycle of negotiating with project managers to reduce their requirements. A goabofated
schedulings to provide a system with relatively quick response time so that a human user may inter
actwith the scheduler and perform “what if” reasoning to assist in this negotiation process. Ultimate
ly, the goal is to automate this negotiation process as well, which will place even greater demands
on scheduler respongiene (Chien & Gratch, 1994). For these reasons, the focus of development
is upon heuristic techniques that do not necessarily uncover the optimal schedule, but rather produce
adequate schedules quickly.

4.2 The Lr-26 Scheduler

Lr-26is a heuristic scheduling approach to DSN scheduling being develogedJat Propulsion
Laboratory(Bell & Gratch, 1993§ Lr-26is based on a 01 integer linear programming formulation

of the scheduling problemdfa, 1982). Scheduling is cast as the probleindihg an assignment

to integer variables that maximizes the value of some objective fursttlgact to a set of linear
constraints. In particulay time periods are treated as 0-1 integer variables: O (or OUT) if the time
period isexcluded from the schedule; 1 (or IN) if it is included. The objective is to maximize the
numberof time periods in the schedule and the solution must satisfyrdiject requirements and
antennaonstraints (expressed as sets of linear inequalities). A typical scheduling problem under this
formulation has 700 variables and 1300 constraints.

In operations research, integer programs are stlyedsariety of techniques including branch-
and-boundsearch, the gomory method (KwakS&hniederjans, 1987), and Lagrangian relaxation

3. Lr-26stands for the Lagrangian Relaxation approach to scheduling the 26-meter sub-net.

371



GRATCH & CHIEN

(Fisher,1981). In artificial intelligence such problems are generally solved by constraint propagation
search techniques (e.g., Dech1®92, Mackworth, 1992).oladdress the complexity of the schedul

ing problem Ir-26uses a hybrid approach that combines Lagrangian relaxation with constraint propa
gationsearch. Lagrangian relaxation is a divide-and-conquer method which, given a decomposition
of the scheduling problem into a set of easier sub-problems, cdleecasb-problems to be solved

in such a way that they frequently result in a global solution. One specifies a problem decomposition
by identifying a subseif problem constraints that, if removed, result in one or more independent and
computationallyeasy sub-problenfsThese problematic constraimi® “relaxed,” meaning they no
longer acias constraints but instead are added to the objective function in such a way that (1) there
is incentive to satisfying these relaxed constraints when solving the sub-problems and, (2) the best
solutionto the relaxed problerif,it satisfies all relaxed constraints, is guaranteed to be the best solu
tion to the original problem. Furthermore, this relaxed objective function is parameterized by a set
of weights (one for eactelaxed constraint). By systematically changing these weights (thereby
modulatingthe incentives for satisfying relaxed constraiatgjlobal solution can often be found.
Evenif this weight search does not produce a global solution, it can make the solution to the sub-prob
lemssuficiently close to a global solution that a global solution can be discovered with substantially
reduced constraint propagation search.

Inthe DSN domain, the scheduling problem is decomposed by scheduling each antenna indepen
dently. Specificallythe constraints associated with the complete problem can be divided into two
groups:those that refer to a single antenna, and those that mention multiple antennas. The later are
relaxedand the resulting single-antenna sub-problems can be solved in time linear in the number of
time periods associated with that antenna (see belowies solvesthe complete problem by first
trying to coerce a global solution by performing a search in the space of weights and then, if that fails
to produce a solution, resorting to constraint propagation search in the space of gobsitilges.

421 SCHEDULES

We now describe the formalization of the problem. Bdte a set of projectg, a set of antennas,

M ={0,..,10080}, and/ be an enumeratiol={0, 1, *}, denoting whether a time period is excluded
from the schedule (0), included (1), or uncommitted. NoteRhatandM, are specified iadvance
andVis to be determined by the sched@aed is initially always uncommitted. LB PxAxMxMxV
denotethe set of possible time periods for a week, where a given time period specifies a project,
antennand the start and end of the communication event, respectiv@lya givers ] S,we define
projecys), antennds), starf(s), ends), andvalug(s) to denote the corresponding elements. &f/e

also defindength(s) = ends) — start(s) to simplify some subsequent notation.

A ground schedulis an assignment of 0 (excluded) or 1 (included) to each time peBodims
canbeseen as the applicationdof some functioti that maps each elementtb 0 or 1. V& denote
this bySC. A partial scheduleefers to a schedule with only a subset of its time periods committed,
whichwe denote via some mapping functMithat maps elements 8o 0, 1, or*. A partial sched
ulecorresponds to a set of possible ground schedules (i.e., those that result from forcing each uncom
mitted time period either in or out of the schedule)e W¢note this b$M. We define a particular
partialschedules®to denote the completely uncommitted partial schedule (with all time periods as
signed a value of *).

4. A problem consists afidependensub-problems it the global objective function can be maximized
by finding some maximal solution for each sub-problem in isolation.
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4.2.2 CONSTRAINTS

The scheduler must identify some ground schedule that satisfies a set of projeattanda
constraints, which we now formalize.

Project Requirements. Each project p P has associated with its&t of constraints called project
requirements. All constraints are processed and translated into simple linear inequalities over
element®fS. The complete set of project requirements, derfeieds the union of the requirements
from each individual projects. Each requirement can be expressed as integer linear inequality:

pr; € PR Zai,j valugs) b, orZai,,- valugs) b
S,ES SES

whereg represents a weighting factadicating the degree to which tile time period (if included)
contributesto satisfying gparticular requirement. For example, the requirement that a praject,
must have at least 100 minutes of communication time in a week is expressed:

Z[I(projec‘(s) = p) lengths)] valugs) 100.

SES

Wherel (projeci(s)) equals one Ebelongs to that project; otherwise zero. Note that time pexniibds
zero weight play no role and are not explicitly mentioned in the actual constraint representation.

Constraints on the length of individual time periods are represented similarly:
lengths) 15

For efficiency, howevey time periods which do not satisfy these uniugqualities are simply
eliminated fromSin a preprocessing stép.

Antenna Constraints. Each of the three antennas has the constraint thainarojects can use the
antenna at the same time. This can be translated into a set of linear ined\@litseach antenna
a as follows:

AG ={s +3§ < 1 |5 #[§ Mantennds)=antenngs)=aC
[start(s)..ends)]n[start(s)..ends)] #1}

4.2.3 PRrROBLEM FORMULATION

The scheduling objective used byrbs is to find some ground schedule, denotedSy that
maximizeshe number of time periods in the schedule subject to the project and antenna cofstraints:

Problem: DSN

Find: S* = arg max ZC = 1)
g max > valugs)
sed
Subject to: AGUOAGUOAGOPR

5. Notethat this is an inherent limitation in the formalization as the scheduler cannot entertain variable
length communication events — communication events must be discretized into a finite set of fixed length
intervals.
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whereZCis the value of the objective function for some ground schedule apthat” denotes the
argument that leads to the maximum.

With Lagrangian relaxatiortertain constraints are folded into the objective function in a stan
dardized fashion. The intuition is to add some factor into the objective function that is nefative if
the relaxed constraint is unsatisfied. If a constraint is of the ¥aygeb, thenu[Zg 5] is added
to the objective function, wheteis a non-negative weighting factor. Likewise, if the constraint is
of the formZg s<b, thenu[b—2g 5] is added. In k-26, only project requirements are relaxed:

Problem: DSN(u)
Find: 2)
S'(u) =
G\ — 7G
argsGmEaS)é Z°u) = Z Z u Z a; valugs) b Z U b— Z g; valugs)
PR SESC PR SESC

Subject to: AC OAGOAG

whereZs(u) is the relaxed objective function and a vector of non-negative weights of lenfftR)|
(onefor each relaxed constraint). Note that this defines a spaetaréd solutions that depend on
the weight vectoru. Let Z* denote the value of the optimablution of the original problem
(Definition 1), and leZz*(u) denote value of the optimal solution to the relaxed problem (Definition
2) for a particular weight vector For any weight vectar, Z*(u) can be shown to be an upper bound
on the value oZ*. Thus, if a relaxed solution satisfies all of the original problem constraints, it is
guaranteedo be the optimal solution to the original probletragrangian relaxation proceeds by
incrementallytightening this upper bound (lagjusting the weight vector) in the hope of identifying

a global solution. A global solution cannot always be identified in this masoes complete
scheduler must combine Lagrangian relaxation with some form of search.

424 SEARCH

If a solution cannot be found through weight adjustmentzdresorts to basic refinement search
(Kambhampatiknoblock & Yang, 1995) (or split-and-prune search (Dechter & Pearl, 1987)) in the
spaceof partial schedules. In this search paradigm a partial schedule is recursively refined (split) into
a set of more specific partial schedules. In the context of the DSN scheduling problem, refinement
correspondso forcing uncommitted time periods in or out of the schedule. A partial schedule would
be prunedf all of its ground schedules violate the constraints. The scheduler is applied recursively
to each refined partial scheduwlatil some satisfactory ground schedule is found or all schedules are
pruned.

Eachrefinement is further refined by propagating the local consequence of new commitment.
After a variable is set to a particular value, each individual constraint which references that variable
is analyzed to determine which time period would be forced in or out of the schedule as a result of
theassignment. k-26performs only partial constraint propagation, because complete propagation
is computationally expensive. Specificaliconstraint C1 references time periogssgand g, and

6. Thismight correspond to a desire to maintain maximum downlink flexibility
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S is assigned a valuerkesanalyzes C1 to see if the new assignment determines the vajeendf s

or ss. If, for example, §is constrained to taken a particular value, this triggers analysis of all
constraintsvhich contain & This can be vieweds performing arc—consistency (Dechi€92).

During the constraint propagation it may be possible to show that the refinement contains no valid
ground schedule. In this case the partial schedule may be pruned from the search.

Lr-26 augments this basic refinement search with Lagrangian relaxation to heuristically reduce
thecombinatorics othe problem. The ditulty with refinement search is that it may have to perform
considerabl¢and poorly directed) search through a tree of refinements to idesitifylasatisficing
solution. Ifan optimal solution is sought, every leaf of this search tree must be exdnimedn
trast,by searching through the space of relaxed solutiongp#utal schedule, one can sometimes
identify thebestschedule without any refinement searEen when this is not possible, Lagrangian
relaxation heuristicallidentifies a small set of problematic constraints, focusing the subsequent re
finementsearch. Thus, by performing some search in the space of relaxed solutions at each step, the
augmentedearch method can significantly reduce both the depth and bofaetinement search.

Theaugmented procedure works to the extent that it ¢@reeitly solve relaxed solutions, ideal
ly allowing the algorithm to explore several points in the space of weight vectors in each step of the
refinementsearch. k-26solves relaxed problems in linear tink]AC,DAGOAG]). To see this,
notethat each time period appears on exaatlg antenna. ThuZ;(u) can be broken into the sum
of three objective functions, each containing only the time periods associated with a particiar anten
na. Furthermore, the relaxed objective function can be re—expressed as the weighted sum of each of
the time periods on that antenna, and the unrelaxed constraints are simple pagxehiseon
constraintetween individual time periods. Combine this whitafact that time periods are partially
ordered by their start time and the problem simplifies to identifying some non—exclusive sequence
of time periods with the maximum cumulative weight. This is easily formulated and solved-as a dy
namic programming problem (see Bell & Gratch, 1993 for more details).

The augmented refinement search performedrsyslis summarized in Figure 2
4.2.5 PERFORMANCE TRADEOFFS

Perhapshe most dficult decisions in constructing the scheduler involve how to flesh out the details
of steps 1,2, 3, and 4. The constraint satisfaction and operations research literatyresposeel

many heuristic methods for these steps. Unfortunatile to their heuristic nature, it is rad¢ar
whatcombination of methods best suits this scheduling problem. The power of a heuristic method
dependsn subtle factors that are fitiult to assess in advance. Additionallyhenconsidering
multiple methods, one has to consider interactions between methods.

In LrR-26 a key interaction arises in the traddmétween the amount of weight vector search vs.
refinementearch performebly the scheduler (as determined by Step 2). At each step in the refine
ment searchthe scheduler has the opportunity to search in the space of relaxed solutions. Spending
moreeffort in this weight search can reduce the amount of subsequent refinement search. But at some
point the savings in reduced refinement search may be overwhelmed by the cost of performing the

7. Partialschedules may also be pruned, as in branch-and-bound search, if they can be shown to contain
lower value solutions that other partial schedules. In praciasils run in asatisficing modemeaning

that search terminates as soon as a ground schedule is found (not necessarily optimal) that satisfies all of
the problem constraints.
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LRr-26 Scheduler

Agenda:= {S0};

While Agendazl
Q) Select some partial schedd@é@lAgenda Agenda:=AgendafS}
(2) Weight search for sonf&*(u) IS;

IF S*(u) satisfies the project requiremen®Rj Then
Return Stu);
Else
3 Select constrairt [IPRnot satisfied bys*(u);
(4) RefineSinto {S}, such that eacB® (IS satisfiesc
angs} =S
Perform constraint propagation on e&h
Agenda= Agendal{ S};

Figure 2: The basicr:26 refinement search method.

weightsearch. This is a classic example of the utility problem, and ifisullito see how best to
resolvethe tradedfwithout intimate knowledge of the form and distribution of scheduling problems.

Anotherimportant issue for improving schedulindigency is the choice of heuristic methods for
controlling the direction of refinement search (as determined by steps 1, 3, and 4). Often these
methodsare stated as general principles (e.g., “firstinstantiate variables that maximally constrain the
restof the search space”, Decht&p92, p. 277) and there may to@any ways to realize them in a
particular scheduler and domain. Furthermore, there are alo®inly interactions between
methods used at different control points that make it difficult to construct a good overall strategy.

Thesdradeofs conspire to make manual development and evaluation of heuristics a tedious, un
certain,and time consuming task that requires significant knowledge about the domain and schedul
er. In the case ofk-26, its initial control strategy was identified hgnd, requiring a significant cycle
of trial-and-error evaluatiohy the developer over a small number of artificial problems. Even with
this efort, the resulting schedulés still expensive to use, motivating us to try adaptive techniques.

5. Adaptive Problem Solving for The Deep Space Network

We developed amdaptive version of the scheduyladaptive Ir-26 in an attempt to improve its
performancé. Rather than committing on a particular combination of heuristic stratégiagtive
Lr-26embodies an adaptive problem solving solution. The scheduler is provided a variety of heuristic
methodsand, after a period of adaptation, settles on a particular combination of heuristics that suits
the actual distribution of scheduling problems for this domain.

To perform adaptive problem solving, we must formally specify three things: a transformation
generatotthat defines the space of legal heuristiatrol strategies; atility function that captures
our preferencesver strategies in the control grammar; and a representative sample of training prob
lems. We describe each of these elements as they relate to the DSN scheduling problem.

5.1 Transformation Generator

The description of k-26in Figure 2 highlights four points of non-determinism with respect to how
the scheduler performs its refinement search. To fully instantiate the scheduler we must specify: a

8. Thissystem has also been referred to by the name DSN@3SER(Gratch, Chien & DeJong, 1993).
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way of ordering elements on the agendagight search method, a method for selecting a constraint,
anda method for generating a spanning set of refinements that satisfy the constraint. The alternative
waysfor resolving these four decisions are specified dyrdol grammar which we now describe.

The grammar defines the space of legal search control strategies available to the adaptive problem
solver.

5.1.1 SELECT SOME PARTIAL SCHEDULE

Thefirst decision in the refinement search is to choose some partial schedule from the agenda. This
selection policy defines the character of skarch. Maintaining the agenda as a stack implements
depth-firstsearch. Sorting the agenda by some value function implements a best-first search. In
Adaptive Lr-26 we restrict the space of methods to variants of depth-first search. Each time a set of
refinementss create@Decision 4), they are added to the front of the agenda. Search always proceeds
by expanding thérst partial schedule on the agenda. Heuristics act by ordering refinements before
theyare added to the agenda. The grammar specifies several ordering heuristics, sometimes called
value ordering heuristicar look—ahead schemésthe constraint propagation literature (Dechter,
1992, Mackworth, 1992). As these methods are entertained during refinement construction, their
detailed description is delayed until that section.

Look-aheadchemes decid®ow to refine partial schedules. Look-back schemes handle the re
versedecision of what to do whenever the scheduler encounters a dead end and must backtrack to
anothempartial schedule. Standard depth-first search perfonmsological backtrackingoacking
up to the most recent decision. The constraint satisfaction literature has explored several heuristic
alternativeso this simple strategincluding backjumping (Gaschnig, 1979), backmarking (Haralick
& Elliott, 1980), dynamic backtracking (Ginsged 993), and dependency-directed backtracking
(Stallman& Sussman, 1977) (see Backer & Baki394, and Frost and Decht&94, for a recent
evaluationof these methods). &Vare currently investigating look-back schemes for the control
grammar but they will not be discussed in this article.

5.1.2 SEARCH FOR SOME RELAXED SOLUTION

The next dimension of flexibility is in weight-adjusting methods to search the space of possible
relaxedsolutions for a given partial schedule. The general goal of the weight setoding a
relaxedsolution that is closest to the true solution in the sense that as many constraints are satisfied
aspossible. This can be achieved by minimizing the valu (f) with respect tar. The most
popularmethod of searching this space is cafleldgradient-optimizatio(Fisher, 1981).This is a
standardoptimization method that repeatedly changes the cutréntthe direction that most
decreaseg*(u). Thus at step u4+1 = U + t;d wheret; is a step size ardl is a directional vector

in the weight space. The method is expensive but it is guaranteed togeotovilre minimunz*(u)

under certain conditions (Held & Karp, 1970)A less expensive technique, but without the
convergencguarantee, is to consider only one weight at a time when finding an improving direction.
Thusu+1 = u; + t;d whered is a directional vector with zeroes in all but one location. This method
is calleadual-descentln both of these methods, weights are adjusted until there is no change in the
relaxed solutionS (4) = S*(U+1).

While better relaxed solutions will create greater reduction in the amount of subsexjunent
ment search, it is unclear just where the tradestiveen these two search spaces lies. Perhaps it is
unnecessary to spend much time improving relaxed schedules. Thus a more radical, and extremely
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efficient,approach is to settle for the first relaxed solution fourelcs¥ this thdirst-solutionmeth

od. A more moderate approach is to perform careful weight search at the beginning of the refinement
searchiwhere there is much to be gained by reducing the subsequent refinement search) and to per
form the more restricted first-solution search when deeper in the refinement search tteen-The
cated-dual-descembethod performs dual-descent at the initial refinement search node anddken
thefirst-solutionmethod for the rest of the refinement search.

The control grammar includes four methods for performing weight space search (Figure 3).

2a: Subgradient-optimization 2c: Truncated-dual-descent
2b: Dual-descent 2d: First-solution

Figure 3: Weight Search Methods

5.1.3 SELECT SOME CONSTRAINT

If the scheduler cannéihd a relaxed solution that solves the original problem, it must break the
currentpartial schedule inta set of refinements and explore them non-deterministidalAdaptive

Lr-26, the task of creating refinements is broken into two decisions: selecting an unsatisfied
constrainiDecision 3), and creating refinemetitat make progress towards satisfying the selected
constraint(Decision 4). Lagrangian relaxation simplifies the first decision by identifying a small
subsebdf constraints that appear problematic. Howghésstill leaves the problem of choosing one
constraint in this subset on which to base the subsequent refinement.

The common wisdom in the search community isctibose a constraint that maximally
constrains the resf the search space, the idea being to minimize the size of the subsequent refine
mentsearch and to allow rapid pruning if the partial schedule is unsatisfiable. Therefore, our control
grammarincorporates several alternative heuristic methods for locally assessing this @it
thatthe common wisdom is only a heuristic, we include a small number of mettzddsolate this
intuition. All of these methods are functions that look at the local constraint graph topology and re
turn a value for each constraint. Constraints can then be ranked by their value and the highest value
constraintchosen. The control grammar implements both a primary and secondary sort for
constraints. Constraints that have the same primary value are ordered by their secondary value.

Forthe sake of simplicity we only discusgasures for constraints of the fatas=0. (Analo
gousmeasures are defined for other forma/g first define measures on time periods. Measures on
constraints are functions of the measures of the time periods that participate in the constraint.

Measureson Time Periods. An unforcedtime period is one that is neither in or ofithe schedule
(valugs)=*). The conflictednes®f an unforced time period (with respect to a current partial
schedulejs the number of other unforced time periods that will be forced sis fiorced into the
scheduldbecause they participate in an antenna constrainswithatime period is already forced
out of the current partial schedule, it does not count togmsuabnflictedness. Forcingime period

with high conflictedness into tleehedule will result in many constraint propagations, which reduces
the number of ground schedules in the refinement.

Thegain of an unforced time periagl(with respect to a current partial schedule) isthber
of unsatisfied project constraints tisgarticipates in. Preferring time periods with high gain will
make progress towards satisfying many project constraints simultaneously.

378



ADAPTIVE PROBLEM SOLVING

Thelossof an unforced time peria{with respect to a current partial schedule) is a combination
of gain and conflictedness. Loss isthe sum of the gain of each unforced time period that will be forced
outif sis forced into the scheduleinde period with high loss are best avoided as they prevent prog
ress towards satisfying many project constraints.

To illustrate these measures, consider the simplified scheduling problem in Figure 4.

P1 P>

Project Requirements
Piisi+9+g22

P 9 +g+522

Antenna Constraints
A si+x<1l
Ar 9 +3<1

A Ao

Figure 4: A simplified DSN scheduling problem based on four time periods. There
are two project constraints, and two antenna constraints. For ex&npignifies that
at least two of the first three time periods must appear in the scheduly, sigdifies
that eithers; or  may appear in the schedule, but not both. In the solutionspnly
andss appear in the schedule.

With respect to the initial partial schedule (with none of the time periods forced eithemwit) or
theconflictedness of.ds one, because it appeargust one antenna constrainbjAlf subsequently
s4is forced out, then the conflictedness pfigops to zero, as conflictedness is only computed over
unforcedtime periods. The initial gain 0f & two, as it appears in both project constraints. Its gain
drops to one ifgand g are then forced into the schedule, ab&omes satisfied. The initial loss
of s is the sum of the gain of all time periods conflicting with4}.(§ he gain of gis one (it appears
in P») so that the loss obgs one.

Measures onConstraints. Constraint measures (with respect to a partial schedule) can be defined
as functions of the measures of the unforced time periods that participate in a constraint. The
functionsmax, min,and total have been defined. Thumtal-conflictednesss the sum of the
conflictednessof all unforced time periods mentionéa a constraint, whilanax-gainis the
maximumof the gains of the unforced time periods. Thus, for the constraints defined above, the
initial total-conflictedness of {Ais the conflictedness ofi sy ands;, 1+ 1 + 1 = 3. The initial
max—gain of constraint;Rs the maximum of the gains of, &, and § or max{1,2,2} = 2.

Wealso define two other constrameasures. Thenforced-periodsf a constraint (with respect
to a partial schedule) is simply the number of unforced time periods that are mentioned in the
constraint.Preferring a constraint with a small number of unforced time periods restricts the number
of refinementshat must be considered, as refinements consider combinations of time periods to force
into the schedule in order to satisfy the constraint. Thus, the initial unforced-periads tiree

(s1, &, and g).
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Thesatisfaction-distancef a constraint (with respect to a partial schedule) is a heuristic measure
thenumber of time periods that must be forgedrder to satisfy the constraint. The measure is heu
ristic because it does not account for the dependencies between time periods imposed by antenna
constraintsThe initial satisfactiordistance of Pis two because two time periods must be forced in
before the constraint can be satisfied.

Giventhese constraint measures, constraints candaged by some measure of their worth. For
example wanayprefer constraints with high total conflictedness, denotpdeder-total-conflicted-
ness.Not all possible combinations seem meaningful so the control grammar for Adaptisien-
plements nine constraint ordering heuristics (Figure 5).

3a: Prefer-max-gain 3f: Penalize-total-conflictedness
3b: Prefer-total-gain 3g: Prefer-min-conflictedness

3c: Penalize-max-loss 3h: Penalize-unforced-periods
3d: Penalize-max-conflictedness 3i: Penalize-satisfaction-distance

3e: Prefer-total-conflictedness

Figure 5: Constraint Selection Methods

5.1.4 REFINE PARTIAL SCHEDULE

Givena selected constraint, the scheduler rotesite a set of refinements that make progress towards
satisfyingit. If the constraintis of the foriras=[Gthen some time periods on the left-hand-sidest
beforced into the schedule if the constraint is to be satisfied. Thus, refinements are constructed by
identifying a set of ways to force time periods in or out of the partial schedsueh that the
refinementform a spanning sefi{ S} = S These refinements are then ordered and added to the
agenda. Again, for simplicity we restrict discussion to constraints of Iagr(b.

The Basic Refinement Method. The basic method for refining a partial schedul® itake each
unforcedtime period mentioned in the constraint and create a refinement with the timeperiod
forcedinto the schedule. Thus, for the constraints defined above, there would be three refinements
to constraint P1, one with $orced in: one with sforced in, and one withggorced in.

Eachrefinement is furtherefined by performing constraint propagation (arc consistency} to de
terminesome local consequences of this new restricfidrus, every time period that conflicts with
v is forced out of the refined partial schedule, which in turn may force other time periods to be in-
cluded,and so forth. By this process, some refinementsheagcognized as inconsistent (contain
no ground solutions) and are prurfedm the search space (fofiefency, constraint propagation is
only performed when partial schedules are removed from the agenda).

Oncethe set of refinements has been created, they are ordered by a value ordering heuristic before
being placedn the agenda. As with constraint ordering heuristics, there is a common wisdom for
creating value ordering heuristics: prefer refinements that maximized the number of future options
availablefor future assignments (DechterRearl, 1987, Haralick & Elliott, 1980). The control
grammatimplements several heuristic methods using measuré®e time periods that created the
refinement.For example, one way to keep options available is to prefer forcing in a time period with
minimalconflictedness. Asthe common wisdom is only heuristic, we also incorporate a method that
violatesit. The control grammar includes five value ordering heuristics that are derived from the
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measures on time periods (Figure 6), where the last method, arbitrary, just uses the ordering of the
time periods as they appear in the constraint.

la: Prefer-gain 1d: Prefer-conflictedness
1b: Penalize-loss le: Arbitrary
1c: Penalize-conflictedness

Figure 6: Value Ordering Methods

The Systematic Refinement Method.The basic refinement method has one unfortunate property
that may limit its efectiveness. The search resulting from this refinement methotystematic

in the sense of McAllester and Rosenblitt (1991). This means that there is some redundancy in the
setof refinementsS'n S20. Unsystematic search is ifiefent in that theotal size of the refinement
searchspace will be greater than if a systematic (non-redundant) refinement method is used. This
may or may not be a disadvantage in practice as scheduling complexity is driven by the size of the
searchspace actually explored (tlefective search spareather than its total size. Nevertheless,
thereis good reason to suspect that a systematic method will lead to sniattévefsearch spaces.

A systematic refinememethod chooses a time period that helps satisfy the selected constraint
andthen forms a spanning set of two refinements: one with the time period forced in and one with
thetime period forced out. These refinements are guaranteed to be non-overlapping. The systematic
method incorporated in the control grammar uses the value ordering heuristic to choose which un-
forcedtime period to use. The two refinements are ordered based on which makes immediate prog
resstowards satisfying the constraint (egr1 is first for constraints of forias=[0). The control
grammar includes both the basic and systematic refinement methods (Figure 7).

4a: Basic-Refinement 4b: Systematic-Refinement

Figure 7: Refinement Methods

Forthe problem specified in Figure 4, when systematically refining constraiom®would use
the value ordering method to select among time perigds and s. If s, wereselected, two refine
ments would be proposed, one wighfarced in and one withpSorced out.

Thecontrol grammar is summarized in Figure 8. The original expert control strategy developed
for Lr-26is a particular point in the control space defined by the grammar: the value ordering method
is arbitrary (1e); the weight search is by dual-descent (2b); the primary constraint ordpenglis
ize-unforced-periods (3h); there is no secondary constraint ordering, thus this is the sarpg-as the
mary ordering; and the basic refinement method is used (4a).

5.1.5 META-CONTROL KNOWLEDGE

The constraint grammaiefines a space of close to three thousand possible control strategies. The
quality of a strategy must be assessed with respect to a distribution of problems, therefore it is
prohibitively expensive to exhaustively explore the control space: taking a significant number of
examplegsay fifty) on each of the strategies at a cost of 5 @Rulites per problem would require
approximately 450 CPU days of effort.
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CONTROL STRATEGY = WLUE ORDERING []
WEIGHT SEARCHMETHOD [
PRIMARY CONSTRAINT ORDERING [
SECONDARY CONSTRAINT ORDERING [
REFINEMENT METHOD

VALUE ORDERING :={1a, 1b, 1c, 1d,1€}

WEIGHT SEARCHMETHOD :={2a, 2b, 2c, 2d}

PRIMARY CONSTRAINT ORDERING :={3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i}
SECONDARY CONSTRAINTORDERING = {3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i}
REFINEMENT METHOD = {4a, 4b}

Figure 8: Control grammar for Adaptiverke

CowmposERrequires d@ransformation generator to specify alternative strategies, which are ex
ploredvia hillclimbing search. In this cagée obvious way to proceed is to consider all single meth
od changes to a givatontrol strategyHowever the cost of searching the strategy space and quality
of the finalsolution depend to a Ige extent on how hillclimbing proceeds, and the obvious way need
not be the best. In Adaptiverlzs, we augment the control grammar with some domain-specific
knowledgeo help oganize the search. Sukimowledge includes, for example, our prior expectation
thatcertain control decisions would interaand the likely importance of the féifent control deei
sions. The intent of this “meta-control knowledge” is to reduce the branching factor in the control
strategysearch and improve the expected utility of the locally optimal solution found. This approach
ledto a layered search through the strategy space. Each control decision is assigned to a level. The
controlgrammar is search by evaluating all combinations of methods at alewgjleadopting the
best combinations, and then moving onto the next level. The organization is shown below:

Level O: {Weight search method}

Level 1: {Refinement method}
Level 2: {Secondary constraint ordering, Value ordering}
Level 3: {Primary constraint ordering}

Theweight search and refinement control poits separate, as they seem relatively independent
from the other control points, in terms of theiieef on the overall strategy. While there is clearly
someinteraction between weight search, refinement construction, and the other controlgoints,
goodselection of methods for pricing and alternative construaimuld perform well across all
orderingheuristics. The primary constraimtdering method is relegated to the last level because
someeffort was made iptimizing this decision in the expert strategy ferk and we believed that

it was unlikely the default strategy could be improved.

Given this transformation generator, Adaptivezs performs hillclimbing across these levels.
It first entertainsveight adjustment methods, then alternative construction methods, then combina
tionsof secondary constraisbrt and child sort methods, and finally primary constraint sort methods.
Each choice is made given the previously adopted methods.

This layered search can be viewed as the consequence of asserting certain types ofaelations
tweencontrol points.Independence relationedicatecases in which the utility of methods for one
controlpoint is roughly independent of the methods used at other control ppmsinance rela-
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tionsindicate that the changes in utility from changing methods for one control point are ngach lar
thanthe changes in utility for another control point. Findligonsistency relations indicate when
a methodvl; for control pointX is inconsistent with methdd, for control pointY. This means that
any strategy using these methods for these control points need not be considered.

5.2 EXPECTED UTILITY

As previously mentioned,hief design requirement forlesis that the scheduler produce solutions

(or prove that none exist) fediently. This behavioral preference can be expressed by a utility
functionrelated to the computationafe@ft required to solve a problem. As théoefto produce a
scheduldncreases, the utility of the scheduler on that problem should decrease. In thisvpaper
characterizethis preference by definingtility as the negative of the CPU time required by the
scheduleon a problem. Thu#daptive [r-26tunes itself to strategies that minimize the average time

to generate a schedule (or prove that one does not exist). Other utility fuctidchbe entertained.

In fact, more recent research has focused on measures of schedule quality (Chien & Gratch, 1994).

5.3 Problem Distribution

Adaptive LrR-26 needs a representative sample of training examples for its adaptation phase.
Unfortunately, DSN Operations has only recently begun to maintain a database of scheduling
problemsn a machine readable format. While this will ultimately allow the scheduler to tune itself
to the actual problem distribution, only a small body of actual problems was available at the time of
this evaluation. Therefore, we resorted to other means to cresés@nable problem distribution.

Weconstructed an augmented set of training problems by syntactic manipulatiosatithreal
problems.Recall that each scheduling problem is composed of two components: a set of project re
guirements, and a set of time periods. Only the time periods change across scheduling problems, so
we can oganize the real problems into a set of tuples, one for each project, containing the weekly
blocksof time periods associated with it (one entry for each week the project is scheduled). The set
of augmented scheduling problems is constructadking the cross product of these tuples. Thus,

a weekly scheduling problem is defined by combining one weeks worth of time periods from each
project(time periods fodifferent projects may be drawn fromfdilent weeks), as well as the project
requirements for each. This simple procedure defines set of 6600 potential scheduling problems.

Two concerns led us to use only a subset of these augmented problems. First, a sigaificant
centageof augmented problems appeared much harder to solve (or prove unsatisfiable) than any of
the real problems (on almost half of the constructed problenssiiggluler did not terminate, even
with large resource bounds). That such “hard” problems exist is not unexpected as scheduling is NP-
hard, howevetheir frequency in the augmented sample seems disproportionately high. Second, the
existenceof these hard problems raises a secondary issue of how best to terminatedeasthn
dardapproach is to impose some arbitreggource bound and to declare a problem unsatisfiable if
nosolution is found within thibound. Unfortunately this raises the issue of what sized bound is most
reasonableWe could have resolved this by adding the resource bound to the control grammar
ever,at this point in the project we settled for a simpler approaahadiiress this and the previous
concern byexcluding from the augmented problem distribution those problems that seem “funda
mentallyintractable.” What this means in practisg¢hat we exclude problems that could not be
solvedby any of a lage set of heuristic methods within a five minute resource bound, the determina
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tion of which is discussed in Appendix A. This results in areduced set oftabeeithousand sched
uling problems.

Theuse of a resource bound can be problematic for evaluating the power of a learning technique.
As noted by Segre, Elkan, and Russell (1991), a learning system that greatly improves problem solv
ing performance under a given resource bound may perform qudeedifly under a diérent re-
sourcebound. Some researchers suggest statistical analysis methods for assessing the significance
of this factor (e.g., see Etzioni and Etzioni, 1994). In this stumlyeverwe do not address the issue
of how results might change given different resource bounds. We noteothed<ERS statistical
propertiesuggest that problem solving performance should be no worse after learning, whatever the
resource bound, but the performance improvement many vary considerably. To give at least some
insightinto the generality of adaptive problem solvimgg include a secondary set of evaluations
based on all 6600 augmented problems (including fundamentally “intractable” ones).

6. Empirical Evaluation

We conjecture that AdaptiveR=26 will improve the performance of the basic scheduléris can

be broken down into tweeparate claims. First, we claim that the modifications suggested above
containuseful transformations (it is possible to improve the scheduler). Sewendaim that
Adaptive Lr-26 should identify these transformations (and avoid harmful ones) with the requested
level of probability The first claim is solely based on our intuitions; the second supported by the
statisticaltheory that underlies thed@rPoserapproach. The usefulness aiMoserdepends on

its ability to Composercan go beyond simply improving performance and identifying strategies that
rank highly when judged with respect to the whole spafcpossible strategies. A third claim,
thereforejs that Adaptive k-26will find better strategies than if we simply picked the best ofglar
numberof randomly selected strategies. Besides testing these three claims, we are also interested
in three secondarguestions: how quickly does the technique improve expected utility (e.g., how
manyexamples are required to make statistical inferences?); can Adaptiwgriprove the number
problemssolved (or proved unsatisfiable) within the resource boand; how sensitive is the
effectiveness of adaptive problem solving to changes in the distribution of problems.

6.1 Methodology

Ourevaluation is influenced by the stochastic nature of adaptive problem solving. During adaptation,
Adaptive Lr-26 is guided by a random selection of training examples according to the problem
distribution. As a result of this random factdine system will exhibit diérent behavior on diérent

runsof the system. On some runs the system may learn high utility strategies; on other runs the
random examples may poorly represent the distribution and the system may adopt transformations
with negative utility Thus, our evaluation is directed at assessingxpectegerformance of the
adaptive scheduler by averaging results over multiple experimental trials.

Forthese experiments, the scheduler is allowed to adapt to 300 scheduling problenradrawn
domly from the problem distribution described above. The expected utility of all learned strategies
is assessed on an independestset of 1000 test examples drawn randomly from the complete set
of three thousand. The adaptation rate is assessed by recording the strategy learned by Adaptive L
after every 20 examples. Thus we can see the méedtrning with only twenty examples, only forty
examplesetc. W measure the statistical error of the technique (the probability of adopting-a trans
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Figure9. Learning curve showing performance as a function of the number of training exe
and table of experimental results.

formationwith negative incremental utility) by performing eighty runs of the system on eighty dis
tinct training sets drawn randomly from the problem distributioa ivéasure the distributional sen
sitivity of the technique by evaluating the adaptive scheduler on a second distribution of problems.
Recallthat we purposely excluded inherentlfidifilt scheduling problems from the augmented set

of problems. If added, these excluded problems should make adaptation froaié aéf no strategy

is likely to provide a noticeable improvement within the five minute resource bound. The second
evaluation includes these difficult problems

A third evaluation assesses the relative quality of the strategies identifiddptyve LrR-26when
comparedvith other strategies in the strategy spades is inferred by comparing the expected util
ity of the learned strategies with several strategies drawn randomly from the space. This also pro
videsan opportunity to assess tingality of the expert strateggnd thus give a sense of how challeng
ing it is to improve it.

CowmposeR the statistical component of the adaptive schedibiéexrtwo parameters that govern
its behavior The parametdyspecifies the acceptable level of statistical error (this is the chizatce
thetechnique will adopt a bad transformation or reject a good one). In Adaptpeethis is set to
astandard value of 5%. dmPoseRbases each statistical inferences on a minimum ekamples.
In Adaptive Lr-26, ny is set to the empirically determined value of fifteen.

6.2 Overall Results — DSN DISTRIBUTION

Figure9 summarizes the results of adaptive problem solwireg the constructed DSN problem
distribution. The results support the two primary claims. First, the system learned search control
strategieshatyielded a significantimprovement in performance. Adaptive problem solving reduced
the average time to solve a problem (or privensatisfiable) from 80 to 40 seconds (a 50%
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improvement).Second, the observed statistical error fell well within the predicted bOfitite 370
transformations adopted across the eighty trials, only 3% decreased expected utility.

Dueto the stochastic nature of the adapsekedulerdifferent strategies were learned orfietif
ent trials. All learned strategies produced at least some improvement in performance. The best of
thesestrategies required only 24 seconds on average to solve a problem (an improvement of 70%).
Thefastest adaptations occurred early in the adaptptiase and performance improvements de
creasedteadily throughout. It took an average of 62 examples to adopt each transformatien. Adap
tive Lr-26 showed some improvement over the non-adaptive scheduler in terms of the number of
problemghat could be solved (or proven unsatisfiable) within the resource boardwias unable
to solve 21% of the scheduling problems within the resource boundadapéve strategy substan
tially reduced this number to 3%.

An analysis of the learned strategies is revealing. Most of the performance improvement (about
onehalf) can be traced to modifications ir-bss weight search methodl he rest of the improve
ments are divided equally among changes to the heuristics for value ordering, constraint selection,
andrefinement. As expected, changes to the primary constraint ordering only degraded performance.
The top three strategies are illustrated in Figure 10.

1) Value ordering: penalize-conflictedness (1c)
Weight search: first-solution (2d)
Primary constraint ordering: penalize-unforced-periods (3h)
Secondary constraint ordering: prefer-total-conflictedness (3e)
Refinement method: systematic-refinement (4b)

2) Value ordering: prefer-gain (1a)
Weight search: first-solution (2d)
Primary constraint ordering: penalize-unforced-periods (3h)
Secondary constraint ordering: prefer-total-conflictedness (3e)
Refinement method: systematic-refinement (4b)

3) Value ordering: penalize-conflictedness (1c)
Weight search: first-solution (2d)
Primary constraint ordering: penalize-unforced-periods (3h)
Secondary constraint ordering: penalize-satisfaction-distance (3i)
Refinement method: systematic-refinement (4b)

Figure 10: The three highest utility strategies learned by Adaptkive. L

Forthe weight search, all of the learned strategies used the first-solution method (2d). It seems
that, at least in this domain and problem distribution, the reduction in refinement search space that
resultsfrom better relaxed solutions is more thafseif by the additional cost of the weight search.
Thescheduler did, howevdrenefit from the reduction in size that results from a systematicrefine
ment method.
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Figure 1L. Learning curves and table efperimental results showing performance over
the augmented distribution (including “intractable” problems).

MoreinterestinglyAdaptive Lr-26 seems to have “rediscovered” the common wisdom in heuris
tic constraint-satisfaction search. When exploring new refinemergsfien suggested to chose
theleast constrained value of the most constrained constraint. The best learned strategies follow this
advicewhile the worst strategies violate it. In the best stratdgytime periodvith lowest con
flictednesds least constraining (in the sense that it will tend to produdedkeconstraint propaga
tions)and thus produces the least commitmenthemesulting partial schedule. By this sanggiar
ment, the constraint with the highest total conflicted will tend to be the hardest to satisfy.

6.3 Overall Results — FULL AUGMENTED DISTRIBUTION

Figure 11 summarizes the results for the augmented distribution. As expected, this distribution
proved more challenging for adaptive problem solving. Nevertheless, maegkirmance
improvementsvere still possible, lending support to our claimed generality of the adaptive problem
solvingapproach. Learned strategies reduced the average solution time from 156 to 146 seconds (an
6% improvement). The best learned strategies required 133 seconds on aveohgedgroblem
(animprovement of 15%). The observed statistical accuracy did not significarfidly fdifm the
theoreticallypredicted bound, although it was slightly higher than expected: of 397 transformations
wereadopted across the trials, 6% produced a decrease in expected Thiétintroduction of the
difficult problems resulted in higher variance in the distribution of incremental utility values and this
is reflected in a higher sample complexity: an averaggé®etamples to adopt each transformation.
Someimprovement was noted on the supposedly intractable problems. One strategy learned by
AdaptiveLr-26increased the number pfoblems that could be processed within the resource bound
from 51% to 57%.

Oneinteresting result of this evaluation is that, unlike the previous evaluation, the best learned
strategiesise truncated-dual-descent as their weight search method (the strategies were similar along
othercontrol dimensions). This illustrates how evendest changes to the distribution of problems
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caninfluence thalesign traded$ associated with a problem solver: in this case, changing the fradeof
between weight and refinement search.

6.4 Quality of Learned strategies

The third claim is that, in practice o@prosercan identify strategies that rank highly when judged

with respect to the whole strategy space. A secondary question is how well does the expert strategy
perform. The improvements of Adaptiverles are of little significance if the expert strategy
performs worse than most strategies in the space. Alternatively, if the expert strategy is extremely
good, its improvement is compelling.

As a way of assessing these claims we estimate the probability of selecting a higtratibtyy
giventhat we choose it randomfiypm one of three strategy spaces: the space of all possible strategies
(expressiblén the transformation grammar), the space of strategies produgeptive Lr-26, and
thetrivial space containing only the expsettategy This corresponds to the problem of estimating
aprobability density functiofp.d.f.) for each space: a p.difx), associated with a randorariable
givesthe probability that an instance of the variable has valiMore specifically we want to esti
matethe density functiong(u), which is the probability of randomly selecting a strategy fspace
sthat has expected utility.

We use a non-parametric density estimation technique called the kernel method to &gtimate
(as inSmyth,1993). D estimate the density function of the whole space, we randomly selected and
testedthirty strategies. All of the learned strategies are used to estimeadiensity of the learned
space.(In both cases, five percent of the data witisheld to estimate the bandwidth parameter used
by the kernel method.) The p.d.f. associated with the single expert strategy is estimatedarsing a
mal model fit to the 1000 test examples from the previous evaluation.

6.4.1 DSN DSTRIBUTION

Figure 12 illustrates the results for the DSN distribution. In this evaluation the learned strategies
significantlyoutperformed the randomly selected strategies. Thus, one would Isalectaand test

many strategies at random before finding one of comparable expected utility to one found by
Adaptive Lr-26.  The results also indicate that the expert strategy is already a good strategy (as
indicatedby the relative positions of the peaks for the expert and random strategy distributions),
indicating that the improvement due to Adaptivezk is significant and non-trivial.

Theresults provide additional insight into Adaptive2s' s learning behaviorThat the p.d.f for
the learned strategies contains several peaks, graphically illustratesf¢hantibcal maxima exist
for this problem. Thus, there may be beniefitunning the system multiple times and choosing the
best strategy. It also suggests teahniques designed to avoid local maxima would be beneficial.

6.4.2 FuLL AUGMENTED DISTRIBUTION

Figurel3illustrates the resultsr the full augmented distribution. The results are similar to the DSN
distribution: the learned strategies again outperformed the expert strategy which in turn again
outperformedthe randomly selected strategies. The data shows that the expert strategy is
significantly better than randomly selected strategiesgether, these two evaluations support the
claimthat Adaptive g-26is selecting high performance strategies. Even though the expert strategy
is quite good when compared with the complete straspgyge, the adaptive algorithm is able to
improve the expected problem solving performance.

388



Probability

Probability

ADAPTIVE PROBLEM SOLVING

0.140/ h<— Improved Performance

0.1204

0.100{ Expert Strategy

0.080 ,
Learned Strategies

0.060 \

0.040;
Random Strategies
0.020] Tl\ \\ /
—
. R N
0 20 40 60 80 100 120 140 160 180

Negative Expected Utility

Figure 12: The DSN Distribution. The graph shows the probability of obtaining a
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7. Future Work

Theresults of applying an adaptiapproach to deep space network scheduling are very promising.
We hope to build on this success in a number of ways.didtuss these directions as they rdlate
the three basic approaches to adaptive problem solving: syntactic, generative, and statistical.

7.1 Syntactic Approaches

Syntacticapproaches attemfut identify control strategies by analyzing the structure of the domain
andproblem solverin Lr-26, our use of meta-control knowledge can be seen as a syntactic approach;
althoughunlike most syntactic approaches that attempt to identify a specific combination of heuristic
methodsthe meta-knowledge (dominance and ifeléénce relations) acts as constraints that only
partially determine a strategyAn advantage of this weakening of the syntactic approach is that it
lendsitself to a natural and complementary interaction with statistical approaches: structural
information restricts the space of reasonabteategies, which is then explored by statistical
techniques.An important question concerning such knowledge is to what extent does it contribute
to the success of our evaluations, and, more interestimglycould such information be derived
automaticallyfrom a structural analysis of the domain and problem solWe are currently
performinga series of experiments to address the former question. A step towards the resolving the
secondquestion would be to evaluate in the context mbésome of the structural relationships
suggested by recent work in this area (Frost & Dechter, 1994, Stone, Veloso & Blythe, 1994).

7.2 Generative Approaches

Adaptive Lr-26 uses a non-generative approach to conjecturing heuristics. Our experiémee in
schedulingdomain indicates that the performamdeadaptive problem solving is inextricably tied

to the transformations it is given and the expense of processing examplesss dunsinductive
learningtechnique relies on goattributes, if ©vPOSERIS to be dictive, there must exist good
methodsdfor the control points that make up a strate@enerative approaches could improve the
effectivenes®sf Adaptive Lr-26. Generative approaches dynamically construct heuristic methods in
responsé¢o observed problem-solving ifieiencies. The advantage of waiting until ifigiencies
areobserved is twofold. First, the exploration of the strategy space can be much more focused by
only conjecturing heuristics relevant to the obsercedplications. Second, the conjectured
heuristics can be tailored much more specifically to the characteristics of thieserved
complications.

Ourprevious application of @rposerachieved greater performariogrovements than Adap
tive Lr-26, in part because it exploited a generative technique to construct heuristics (Gratch & De
Jong,1992). Ongoing research is directed towards incorporating generaitieds into Adaptive
Lr-26. Some preliminary work analyzes problem-solving traces to induce good heuristic methods.
The constraint and value ordering metrics discussed in Section 5.1.3 are used to characterize each
searcmode. This information is then féala decision-tree algorithm, which tries to indudeaive
heuristic methods. These generated methods can then be evaluated statistically.

7.3 Statistical Approaches

Finally there are directions of futunork devoted towards enhancing the power of the basic
statistical approach, both for Adaptive-bsin particular, and for statistical approaches in general.
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For the schedulerthere are two important considerations: enhancing the control graamdar
exploringa wider class of utilitjunctions. Several methods could be added to the control grammar
For example, an informal analysis of the empirical evaluations suggests that the scheduler could
benefitfrom a look-back scheme such as backjumping (Gaschnig, 1979) or backmarking (Haralick
& Elliott, 1980). V¢ would also like to investigate the adaptive problem solving methodology on
aricher variety of scheduling approaches, besides integer programming. Among these would be
more powerful bottleneckcentered techniques (Biefeld & Coopeér991), constraint-based
techniquegSmith & Cheng, 1993), opportunistic techniques (Sadeh, 1994), reactive techniques
(Smith, 1994) and more powerful backtracking techniques (Xiong, Sadeh & Sycara, 1992).

Thecurrent evaluation of the scheduler focusagroblem solving time as a utility metric, but
futurework will consider how to improve other aspects of the schedulers capabilities. For example,
by choosing another utility functiome could guide Adaptiver-26towards influencing other aspects
of Lr-26's behavior such as: increasing the amount of flexibility irgdrerated schedules, increas
ing the robustness of generated schedules, maximizing the nundadis@ied project constraints,
or reducing the implementation castgenerated schedules. These alternative utility functions are
of great significance in théttey provide much greater leverage in impacting actual operations. For
example finding heuristics which will reduce DSN schedule implementation costs by 3% would
havea much greater impact than reducing the automated scheduler response time by 3%.-Some pre
liminary work has focused on improving schedule quality (Chien & Gratch, 1994).

Moregenerallythere are severalays to improve the statistical approach embodieddwrCs
ER. Statistical approaches involt®o processes, estimating the utility of transformations and ex
ploringthespace of strategies. The process of estimating expected utilities can be enhanced by more
efficient statistical methods (Chien, Gratch & Burl, 1995, Moore & Lee, 1994, Nelson & Matejcik,
1995),alternativestatistical decision requirements (Chien, Gratch & Burl, 1995) and more complex
statisticaimodels that weaken the assumption of normality (Smyth & Mellstrom, 1992prd¢ess
of exploring the strategy space can be imprdwetth in terms of its &tiency and susceptibility to
localmaxima. Moore and Lee propose a method cattbédmata seahto help reduce theombina
toricsof the searchProblems with local maxima can be mitigated, albeit expenshsebonsidering
all k-wise combinations of heuristics (as iruldi-Tac) or level 2 of Adaptive k-26s search), or by
standarchumerical optimization approaches such as repeating the hillclimbing search teesral
from different start points.

Onefinal issue is the expense in processing training examples. Imrtleedbmain this cost
grows linearly withthe number of candidates at each hillclimbing step. While this is not bad from
acomplexity standpoint, it is a pragmatic concern. There have been a few proposals to reduce the
expense igathering statistics. In previous work (Gratch & DeJong, 1992) we exploited properties
of the transformations to gather statistics from a single solution attempt. That system tbqtired
theheuristic methods only act by pruning refinements that are guaranteed unsatisfiable. Greiner and
Jurisica(1992) discuss a similar technique that eliminates this restriction by providing upperand low
erbounds on the incremental utility of transformations. Unfortunateither of these approaches
couldbe applied to k-26 so devising methods to reduce the processisgis an important direction
for future work.
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8. Conclusions

Although many scheduling problems are intractalite, actual sets of constraints and problem
distributions,heuristic solutions can provide acceptable performance. A frequictldifis that
determiningappropriate heuristic methods for a given problem class and distributicmaenging
procesghat draws upon deep knowledge of the doraaiththe problem solver used. Furthermore,

if the problem distribution changes some time in the future, one must manually re-evaluate the
effectiveness of the heuristics.

Adaptive problem solving is general approach for reducing this developmental burden. This
paperhas described the application of adaptive problem solving, usingtbesicheduling system
and the ©@mpPosermachine learningystem, to automatically learrfegtive scheduling heuristics
for Deep Space Network communications scheduliByg.demonstrating the application of these
techniguedgo a real-world application problem, this paper has makes several contributions. First, it
providesan example of how a wide range of heuristics can be integrated into a flexible problem-solv
ing architecture — providirgn adaptive problem-solving system with a rich control space to search.
Secondjt demonstrates that the filiulties of local maxima and lge search spaces entailed by the
rich control space can lactably explored. Third, the successful application of therGserstatis
tical techniques demonstrates the real-world applicability of the statistical assumptions underlying
the Composerapproach. Fourtland most significant|ythis paper demonstrates the viability of
adaptiveproblem solving. The strategies learned by the adaptive problem solving signifozantly
performed the best human expert derived solution.

Appendix A. Determination of the Resource bound

A good CPU bound to characterize “intractable” problems should have the characteristic that
increasinghe bound should have littlefe€t on the proportion of problems solvable. In order to
determinethe resource bound to define “intractable” DSN scheduling problems we empirically
evaluatedhow likely Lr-26 was to be able to solve a problem with various resource bounds.
Informally, we experimented to find a bound of 5 CPU minutes ttin formally verified this bound

by taking those problems not solvable within the resource bound of 5 CPU minutes, allavwdsg L
anadditional CPU hour to attempt to solve the problemd,observing how thisfatted solution rate.

As expected, even allocating significant more CPU timrezéwas not able to solve manyore
problems. Figure 14 below shows the cumulative percentage of problems solved; from those not
solvable within thés minute CPU bound. This curve shows that even with another CPU hour (per
problem!), only about 12% of the problems became solvable. This graph also shows the 95%
confidenceintervals for thiscumulative curve. In light of these results, the fact that one learned
strategywas able to increase by 18% the percentage of problems solvabletidthisource bound

is even more impressivén effect, learning this strategy has a greater impact than allocating another
CPU hour per problem.
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